
SIPs: Shift-and-Invert Parallel Spectral
Transformations

HONG ZHANG

Computer Science Department, Illinois Institute of Technology

BARRY SMITH

Mathematics and Computer Science, Argonne National Laboratory

MICHAEL STERNBERG and PETER ZAPOL

Materials Science, Argonne National Laboratory

SIPs is a new efficient and robust software package implementing multiple shift-and-invert spectral
transformations on parallel computers. Built on top of SLEPc and PETSc, it can compute very
large number of eigenpairs for sparse generalized Hermitian eigenvalue problems.

The development of SIPs is motivated by applications in nanoscale materials modeling, in
which the growing size of the matrices and the pathological eigenvalue distribution challenge the
efficiency and robustness of the solver. In this paper, we develop a parallel eigenvalue algorithm
that is based on the idea of distributed spectrum slicing. We describe SIPs’ object-oriented
software design and implementation techniques, and demonstrate its numerical performance on
an advanced distributed computer.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Eigenvalues and eigenvectors, Sparse, structured, and very large systems (direct and iterative
methods); G.4 [Mathematical Software]: Parallel and vector implementations, Efficiency, Re-
liability and robustness

General Terms: Algorithm, Performance

Additional Key Words and Phrases: Parallelism, sparse eigenvalue computation, spectral trans-
formation

1. INTRODUCTION

This work is motivated by applications in nanoscale materials modeling. A key
problem in this field is to calculate and optimize the configurational energy of
a system of atoms. A hierarchy of methods exists, and the mathematical core
underlying many of them is a generalized eigenvalue problem of the form

Axi = λiBxi , i = imin, · · · , imax , (1)

where A and B are n× n Hermitian matrices, B is positive definite, and imin and
imax are the index range of requested eigenpairs.

Author’s address: H. Zhang, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4844
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0111 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 111–127.

112 · H. Zhang et al.

More specifically, we use the density-functional-based tight-binding method (DFTB)
[Elstner et al. 1998] for materials modeling applications. The eigenproblems posed
by DFTB as studied in this paper are distinguished by several features:

(1) The matrix pencil (A, B) is large and sparse. Its size n is proportional to the
number of atoms in the model. With an ultimate goal of simulating 50,000
atoms, the matrices are expected to be as large as n = 200, 000.

(2) A large number of eigensolutions are requested, e.g., 60% eigenvalues and the
associated eigenvectors are wanted based on current DFTB applications.

(3) The spectrum is pathologically difficult. It has clusters of hundreds of tightly
packed eigenvalues, and very poor average relative eigenvalue separation:

ave
(

λi+1 − λi

λn − λ1

)
= O(n−1) (typically ≈ 10−5 in our study).

Even worse, some clusters are adjacent to gaps that have lengths far larger than
the average eigenvalue separation:

λj+1 − λj $ ave (λi+1 − λi) .

(4) The global coupling of the nonzero elements in (A, B) gives rise to not-very-
sparse to dense matrix factorizations. For example, the matrix factors of ma-
trices with n = 16, 000 under study have sparse densities ranging from 7% to
50%. By conventional sparse matrix standards, 7% is still extremely dense.

(5) The simulation requires a significant number of iterations (possibly 1000’s) of
Eq. (1) with closely related matrices A and B.1

In this paper, we consider the eigenvalue problem Eq. (1) with the features de-
scribed above. Our discussion focuses on computing eigenvalues ordered increas-
ingly from imin to imax, and their associated eigenvectors. The discussion can easily
be applied to other general forms, e.g., computing all eigenvalues in [a, b] and their
eigenvectors.

Existing eigensolvers are customarily developed based on two types of matrix
storage: dense and sparse storage. They are typically solved using direct methods
and iterative methods, respectively.

Direct methods compute all or almost all eigensolutions of dense matrices. They
exhibit O(n3) time and O(n2) memory complexity. Library software based on the
direct methods is provided in the LAPACK [Anderson et al. 1999] and ScaLAPACK
[Blackford et al. 1997] packages. Both were used in the past for DFTB, but time and
memory scaling prevents us from advancing to larger nanoscale systems of current
interest. In particular, our experience has shown that extensive communication
requirements in ScaLAPACK cause scaling problems on workstation clusters with
commodity networking hardware.

Iterative methods such as Lanczos [Lanczos 1950] and Jacobi-Davidson [Sleijpen
and van der Vorst 1996] are widely used for extracting a few extreme eigensolu-
tions of sparse matrices. Their time and space complexity are bound above by

1The matrix A contains a perturbation dependent upon the solution vectors x, so that a fixpoint
solution is sought for a given position of atoms and fixed B. In an outer iteration, both matrices
depend on the positions of atoms being optimized or time-stepped.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SIPs · 113

the complexity of direct methods, yet they are usually much more efficient when
the matrices involved are indeed sparse. The available software include ARPACK
[Lehoucq et al. 1998] and several others [Hernandez et al. 2004] [Marques 1995] [Wu
and Simon 1997]. When interior eigenvalues are requested, a practical approach is
to replace (A, B) by a shift-and-invert operator C [Ericsson and Ruhe 1980]:

Ax = λBx ⇐⇒ (A− σB)x = (λ− σ)Bx, σ '= λ
⇐⇒ 1

λ−σ y = B (A− σB)−1

︸ ︷︷ ︸
C

y, y = Bx,

which yields

Cy = λ̃y, λ̃ =
1

λ− σ
. (2)

Employing Lanczos iterations to (2) leads to eigensolutions of the original equation
(1) that are close to the shift σ.

DFTB and related methods for materials modeling require a large fraction of
eigensolutions—typically the lower 50% of the spectrum—with accurate accounting
for all requested eigenpairs and reliable orthogonalization in degenerate or nearly
degenerate subspaces. Without significant customization, none of the available it-
erative eigenvalue packages are able to provide sufficient efficiency and robustness
crucial to the modeling process. In this article we propose SIPs, a new software
package implementing shift-and-invert parallel spectral transformations on top of
the existing iterative eigensolver. We introduce an eigenvalue algorithm in Sec-
tion 2, and describe its implementation in Section 3. The implementation includes
the object-oriented software design for performance, portability and re-usability,
and the techniques that build efficiency and robustness into the proposed eigen-
solver. In Section 4 we present numerical experiments using SIPs, and comparison
with ScaLAPACK. From our tests, three systems of nanoscale materials with di-
verse characteristics are reported on for their distinct sparse densities of the matrix
factorization, a dominating factor for the performance of SIPs. Finally, we give
conclusions and impact of this work.

2. MULTIPLE SHIFT-AND-INVERT PARALLEL EIGENVALUE ALGORITHM

Based on the idea of distributed spectrum slicing, we propose concurrently using
Lanczos iterations with multiple shift-and-invert spectral transformations on a dis-
tributed eigenvalue spectrum. Note, this general approach have been studied by
others, e.g., [Teranishi et al. 2003], but our algorithm described here is different,
and the software development is entirely new.

Initially, the user provides a requested eigenvalue interval. We divide it into
overlapping subintervals and assign each to a process. A process starts from a
shift in the middle of its interval, and picks new shifts at the left and right sides
of the current shift. The bounds of processed subintervals are exchanged between
neighboring processes during the computation of local eigensolutions. Using this
information, each process adjusts its assigned subinterval, which redistributes the
initially assigned subintervals dynamically and balances the parallel workload.

Within each process, multiple shifts are selected one after the other for computing
all eigensolutions in the assigned subinterval. For a single shift, the shift-and-invert

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

114 · H. Zhang et al.

spectral transformation enhances convergence to the eigenpairs that are close to the
shift. A well-chosen shift allows us to compute tens to hundreds of eigensolutions
with one to several Lanczos runs.

When a particular shift σ is chosen, we apply a matrix factorization

A− σB = LDLT , (3)

then feed it into a Lanczos iteration for generating a Krylov subspace. As a byprod-
uct, Eq. (3) also provides ν(A− σB), the number of eigenvalues of (A,B) that are
smaller than σ. For simplicity, we denote ν(σ) = ν(A−σB) and refer to it as matrix
inertia. This number is used for validating the eigensolutions computed through
the shift σ. Each shift incurs an expensive matrix factorization (3), and two further
shifts σi, σj are needed for checking the validity of eigensolutions in the interval
(σi, σj). To make our solver efficient and robust, we dynamically select a set of
shifts which produces multiple sets of eigensolutions at minimum redundancy, and
reuse these shifts to validate the eigensolutions.

We describe the Multiple Shift-and-Invert Parallel Eigenvalue Algorithm in Fig. 1.

Input : matrix pencil (A, B);
index range imin, imax and/or requested eigenvalue spectrum (λmin, λmax);

eigenvalue approximation {λ̂i} (optional).
Output : k-th process has its local list of eigenpairs indexed from

ik to ik+1 − 1 (i0 = imin, inp = imax).

Process k (k=0,...,np-1):

(1) Initialize:

(a) set an initial shift σ
(k)
0 ; compute matrix inertia ν(σ

(k)
0);

(b) get initial local assigned spectrum (λ
(k)
min, λ

(k)
max) and associated index bound i

(k)
min, i

(k)
max;

(c) initialize local computed spectrum [σ
(k)
min, σ

(k)
max]={σ(k)

0 }.
(2) Do until the local list of eigensolutions is full:

(a) compute eigenpairs that are close to the selected shift σ
(k)
i by the shift-and-invert Lanc-

zos iteration;
(b) check validity of the computed eigenvalues against the eigenvalues that are already on

the local list; add the new and desired eigensolutions to the list;

(c) compute new possible shifts at left and right side of σ
(k)
i ;

(d) pick next shift σ
(k)
i+1 and compute ν(σ

(k)
i+1); if σ

(k)
i+1 < σ

(k)
min or σ

(k)
i+1 > σ

(k)
max, update

computed spectrum [σ
(k)
min, σ

(k)
max] and send σ

(k)
i+1, ν(σ

(k)
i+1) to neighboring processes;

(e) receive messages from neighboring processes and update its assigned spectrum (λ
(k)
min,

λ
(k)
max) and index bounds i

(k)
min, i

(k)
max.

(3) Final check:

(a) exchange λ
(k)
min, λ

(k)
max and i

(k)
min, i

(k)
max with neighboring processes;

(b) delete duplicate eigensolutions.

Fig. 1. Multiple Shift-and-Invert Parallel Eigenvalue Algorithm

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SIPs · 115

3. IMPLEMENTATION OF THE ALGORITHM

Next, we discuss the implementation of the Multiple Shift-and-Invert Parallel Eigen-
value Algorithm. We start from the software design, then proceed to explain the
techniques for dynamically selecting shifts, bookkeeping of locally computed eigen-
solutions, maintaining parallel job balance, ensuring global accuracy of the eigen-
solutions, and finally, organizing subgroups of MPI communicators for processing
large-scale matrix operations.

3.1 Software Structure Design

The design objective of our eigensolver is to deliver high performance with limited
effort for development and maintenance, and to enable portability and re-usability.
Our design choices are guided by the following three major components of the
algorithm:

(1) Sequential and parallel sparse matrix operations, e.g., matrix-vector multiplica-
tion, matrix factorization, triangular solve etc. These fundamental operations
would dominate the performance of the eigensolver.

(2) Lanczos iterations with a single shift-and-invert spectral transformation.
(3) Sequential selection of multiple shifts, parallel distribution of the eigenvalue

spectrum, and bookkeeping computed eigensolutions.

(1) and (2) have been implemented by well-developed software packages, whilst (3)
is not available. After examining various existing software packages that implement
(1) and (2), we choose PETSc [Balay et al. 2004] and its add-on package, SLEPc
[Hernandez et al. 2004]. PETSc provides us with sequential and parallel data
structures and basic operations that implement (1). SLEPc offers built-in support
for spectral transformation and Lanczos eigensolvers required by (2).

Although PETSc and SLEPc provide adequate data and solver objects for imple-
menting (1) and (2), state-of-the-art special-purpose software packages exist that
either outperform or are more reliable than PETSc and SLEPc on specific tasks.
Through interfaces provided by PETSc and SLEPc, we can easily make use of these
desirable packages. Because the direct sparse matrix factorization and triangular
solve dominate computational time, through PETSc interface, we link to the MUl-
tifrontal Massively Parallel sparse direct Solver (MUMPS) [Amestoy et al. 2000]
[Amestoy et al. 2001] for such demanding computation. In addition, due to the
pathological eigenvalue distribution, very few available iterative eigenvalue pack-
ages are able to deliver reliable solutions for our DFTB models. Among them, we
pick ARPACK, whose interface is provided by SLEPc. To recapitulate, our task
for the proposed algorithm (Fig. 1) is to implement (3) as a new package on top of
SLEPc and PETSc. We name this new package Shift-and-Invert Parallel Spectral
Transformations (SIPs). Fig. 2 illustrates our overall software design for imple-
menting the Multiple Shift-and-Invert Parallel Eigenvalue Algorithm described in
Section 2.

Through the interfaces of PETSc and SLEPc, SIPs easily uses the external eigen-
value package ARPACK and the parallel sparse direct solver MUMPS. The pack-
ages can be upgraded or replaced without programming changes to SIPs. SIPs itself
implements the following major tasks:

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

116 · H. Zhang et al.

MPI
MUMPSPETSc

ARPACKSLEPc
SIPs

Fig. 2. Software Structure

(1) Select shifts;
(2) Bookkeep and validate eigensolutions;
(3) Balance parallel workload;
(4) Ensure global orthogonality of eigenvectors;
(5) Organize subgroups of MPI communicators.

We discuss technical details of these tasks in the next five subsections.

3.2 Select Shifts

In the beginning, an initial shift σ0 is chosen at the midpoint of the subinterval
[λ(k)

min, λ(k)
max] which is assigned to the k-th process. Using it, a set of eigenvalues

λ1, λ2, ..., λnev (in increasing order) close to σ0 are computed. To determine the
next two possible shifts, extending from the left and right of σ0, we adopt a similar
strategy as proposed by [Grimes et al. 1994], i.e., assuming the radii of convergence
for neighboring shifts are about the same, the new shift σ1 extending from the right
of σ0 can be selected as

σ1 = σ0 + 2δ, δ = max(|λ1 − σ0|, |λnev − σ0|). (4)

Our actual code uses a slightly more conservative estimate than the above.
We use a queue to store all the selected shifts that are waiting for processing. In

this article, a shift is called active when it is taken from the head of this queue and
currently participates in the eigenvalue computation, pending when it waits on the
queue, and used after its Lanczos iterations are finished.

When a new shift σnew is selected from an active shift, it is appended to the end
of the queue with the following data:

—σleft, σright: neighboring active or used shifts (thus their matrix inertias have been
computed). We call (σleft, σright) a pending interval in which the eigenvalues are
either uncomputed or computed, but have not gone through a validity check.

—ν(σleft), ν(σright): νright − νleft is the number of pending eigenvalues located in
(σleft, σright).

—isLext, isRext: information about from which side of the active shift σnew is
selected or extended.

For example, if σnew = σ1 is selected from the right of an active σ0, then it has
the attached data: σleft = σ0, σright = λmax, ν(σleft) = ν(σ0), ν(σright) = imax,
isLext = false, and isRext = true. Similarly, σ2 is extended from left of σ0 and
attached with the data about its pending interval (λmin, σ0).
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SIPs · 117

After all eigensolutions are computed from the active σi, and the possible new
shifts at each side of σi are selected and appended to the end of the queue, we
take σi+1 from the head of the queue and proceed to the next round of Lanczos
iterations until the queue becomes empty.

The shift selection process described above works well in normal situations, i.e.,
under the assumption that neighboring shifts have roughly the same radius of con-
vergence. However, the DFTB eigenvalue spectrum in general has a very large
disparity, and sometimes an eigenvalue cluster is adjacent to a gap that is a thou-
sand times larger than the convergence radius of the cluster. When this occurs, the
next shift σi+1 likely falls into the adjacent gap and is closer to the just computed
cluster than to uncomputed eigenvalues located at the other side of the gap. Us-
ing it, the eigensolver would recompute the just obtained eigenvalue cluster at an
extremely high number of Lanczos runs or reach the maximum number of Lanczos
runs without getting any converged eigensolutions. To deal with this difficulty, we
must be able to detect a gap and know how to move the shift over to the side of
uncomputed eigenvalues.

We detect the gap and move the shift based on information from the pending
interval (σleft, σright). For example, if σ has isRext = true (extended from the right
side of its parent shift) and ν(σ)−ν(σleft) ≈ 0, i.e., there are none or few eigenvalues
in (σleft, σ), then σ likely falls into a gap. In this case, we move σ toward the right
side of the pending interval (σleft, σright):

σ = (1− τ)× σ + τ × σright, 0.5 ≤ τ < 1. (5)

The move (5) is repeated if a single move is not sufficient. Note that Eq. (5) assigns
a new value to σ within its pending interval. While the pending interval remains
unchanged, the move requires a matrix factorization (3) which should be applied
only when it is necessary.

In DFTB modelings, the eigenvalue problem (1) is solved repeatedly, each with
a slightly modified matrix pencil (A,B). The previously computed eigensolutions
can be used as approximations to the solutions of the next eigenvalue problem. In
SIPs, we use computed eigenvalues or the Rayleigh quotient of computed eigen-
vectors, denoted as {λ̂i}, as approximations to the new eigenvalues. When the
approximations are available, the new shifts are selected based on its information.
For example, the shift σ1 in Eq. (4) now can be selected as

σ1 = λ̂i, i = ν(σ0) + nev.

The eigenvalue approximations {λ̂i} also indicate possible gap locations, so that
the shifts would be chosen effectively away from gaps.

There are other special cases in which selected shifts need to be adjusted or
dumped when their pending intervals become empty due to changes made before
becoming active. In this article, however, we concentrate on major techniques used
by SIPs and skip technical description of minor cases.

3.3 Bookkeep and Validate Eigensolutions

We use a structure array in C, named Local Solution List, to store eigensolutions
computed by a process. Each element in the array represents an eigensolution:

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

118 · H. Zhang et al.

typedef struct {
PetscReal *val,*cval; /* eigenvalues, eigenvalue clusters */
PetscInt *cmap; /* maps cluster to eigenvalues */
Vec *vec; /* eigenvectors */
PetscInt *status; /* one of status: UNCOMPUT, COMPUT, or DONE */
PetscInt *mult,*cmult; /* multiplicity of eigenvalues and clusters */
PetscInt *isigma; /* matrix inertia of the shift by which val is computed */
} EVSOL;

The initial length of the list in process k is set as ik+1 − ik (see Fig. 1). When a
set of eigensolutions is computed through a shift σ, the eigenvalues are ordered as

λ1 ≤ · · · ≤ λi < σ < λi+1 ≤ · · · ≤ λnev. (6)

Using the matrix inertia ν(σ), we can compute absolute indices for these eigen-
values, e.g., λi is the ν(σ)-th eigenvalue of (A,B). These values are checked or
compared with the ones that are already on the Local Solution List. The newly
computed eigensolutions assigned to this process are then added onto the list to-
gether with relevant data.

Due to existence of multiple and clustering eigenvalues, some eigensolutions with
values between λ1 and λnev might not be computed. Without further validating the
computed eigensolutions, those put on the list cannot be trusted yet. The validity
check is implemented by verifying whether a computed eigenvalue is in a trusted
interval, by which we mean the number of eigenvalues expected in the interval
agrees with the number actually computed [Grimes et al. 1994].

Establishing a trust interval (a, b) requires matrix inertias at a and b, as well
as the total number of computed eigenvalues in it. Because matrix factorization,
Eq. (3), is expensive, we want to limit its invocation to the necessary shift-and-
invert Lanczos iterations. The trust intervals are then established by reusing the
active and used shifts.

Before any eigensolution is computed, its status on the Local Solution List is
initialized as UNCOMPUT. When a set of eigensolutions are computed through the
initial shift σ0 and added onto the Local Solution List, their status are upgraded to
COMPUT. Assume a new shift σ1 (> σ0) becomes active. It will generate a new
set of eigensolutions in one of the following two cases:

Case 1. An eigenvalue λ(1) (< σ1) overlaps a previously computed eigenvalue
λ(0) (> σ0). Using matrix inertia ν(σ0) and ν(σ1), the overlapping eigenvalues
λ(1) = λ(0) obtain two eigenvalue indices.

If the indices match, the number of actually computed eigensolutions in (σ0, σ1)
matches the expected number ν(σ1)−ν(σ0). Thus (σ0, σ1) is a trusted interval. All
the solutions in this interval pass the validity check. Their status are then upgraded
to DONE. Those not located inside a trusted interval have status COMPUT.

When the indices do not match for all the overlapping eigenvalues, the newly
computed eigensolutions are put onto the list with status COMPUT. A new shift
will be selected somewhere between σ0 and σ1.

Case 2. None of the newly computed eigenvalues overlap the ones already on
the Local Solution List. Then the status COMPUT is set for all newly computed
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SIPs · 119

eigensolutions. New shifts will be selected at both sides of the active shift σ1 by
the shift selection process described in Section 3.2.

This bookkeeping process repeats recursively until all the solutions on the Local
Solution List have status DONE.

3.4 Balance Parallel Workload

The workload for each process is proportional to the assigned number of eigensolu-
tions ik+1 − ik or the length of the assigned eigenvalue spectrum (λ(k)

min, λ(k)
max), see

Fig. 1, and can be dramatically affected by the eigenvalue distribution. In general,
an accurate a priori workload estimate is impossible.

For the k-th process, we name the interval (λ(k)
min, λ(k)

max) assigned to this process
for eigenvalue computation the Assigned Spectrum, and call [σ(k)

min, σ(k)
max] the Com-

puted Spectrum, where σ(k)
min and σ(k)

max are the smallest and the largest local active
or used shifts.

We balance parallel workload through dynamically updating the Assigned Spec-
trum during computation. Initially, we distribute overlapping Assigned Spectra
into processes, then reduce the overlap through neighboring exchanges of Com-
puted Spectra.

Using np processes, we initially pick np points inside the requested global eigen-
value spectrum (λmin, λmax)

λmin < σ(0)
0 < σ(1)

0 < · · · < σ(np−1)
0 < λmax,

and form overlapping Assigned Spectra

(σ(k−1)
0 ,σ(k+1)

0), k = 0, · · · , np− 1, (σ(−1)
0 = λmin,σ(np)

0 = λmax).

Process k takes σ(k)
0 as initial shift, expands its initial Computed Spectrum [σ(k)

min =
σ(k)

0 , σ(k)
max = σ(k)

0] outward by selecting new shifts from both sides of σ(k)
0 as de-

scribed in the previous sections. When a new σ(k)
min or σ(k)

max is computed, e.g., a
new σ(k)

max is computed, it is sent to the neighbor process k + 1. Upon receiving it,
process k + 1 is informed that [σ(k)

0 , σ(k)
max], a portion of its Assigned Spectrum, has

been processed by process k. Then process k + 1 updates its Assigned Spectrum
by moving its λ(k+1)

min from σ(k)
0 inward to σ(k)

max. Fig. 3 illustrates this scheme.
Assigning overlapping spectra enables some processes to compute more eigenso-

lutions than others during same time period. As Computed Spectra expand from
the middle of Assigned Spectra at various rates, each process receives information
about its neighbors’ Computed Spectra and updates its own Assigned Spectrum.
This procedure dynamically reassigns the workload among processes. At the end,
np Computed Spectra cover the user requested global eigenvalue spectrum (λmin,
λmax) with minimum overlap. Duplicate eigensolutions are dumped at the final
phase of the computation, in Step (3) of Fig. 1.

All processes implement this procedure using asynchronous neighboring commu-
nication of short messages. We stress that the communication cost incurred is
insignificant compared with the computational cost.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

120 · H. Zhang et al.

Proc[1]

Proc[0]

Proc[1]

!min 0
" (0) "0

(1) "0
(2)"

1
(0)

Proc[0]

!min 0
" (0) "0

(1) "0
(2)

(a)

(b)

Fig. 3. Assigned Spectrum (dashed line) and Computed Spectrum (bold line)
(a) before updating; (b) after updating

3.5 Ensure External Orthogonality of Eigenvectors

In this section, we discuss how to ensure the accuracy of the proposed eigensolver,
by which we mean the relative residual norm

ri =
||Axi − λiBxi||2

||λixi||2
(7)

and the orthogonality
ϑij = xT

i Bxj − δij (8)
of computed eigenpairs, both desired to fall within user specified tolerances. We
distinguish between internal orthogonality, i.e., orthogonality among eigenvectors
computed through the same shift-and-invert transformation, and external orthogo-
nality, for all other pairs.

Both the residual norm of all computed eigenpairs and their internal orthogonal-
ity are inherited from the external eigenvalue software package that SIPs is built
upon, i.e., ARPACK [Lehoucq et al. 1998] in our current implementation. Our nu-
merical experiments show that ARPACK gives satisfying eigensolutions when the
user provides sufficiently small error tolerances (see Section 4).

What remains to be addressed regarding the accuracy of eigensolutions is the ex-
ternal orthogonality of eigenvectors, i.e., orthogonality between eigenvectors com-
puted from different shift-and-invert transformations.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SIPs · 121

Hermitian matrices have orthogonal eigenvectors. They do not pose numerical
difficulties as long as the associated eigenvalues are well separated. Occasionally,
numerical loss of eigenvector orthogonality occurs, usually for clustered eigenvalues.
In the following, our discussion focuses on how to ensure external orthogonality
between clustered eigenvectors, i.e., orthogonality between eigenvectors obtained
from different shifts, and their associated eigenvalues are clustered. We distinguish
two cases:

Case 1. (λi, xi) and (λi+1, xi+1) are computed from two different shifts in the
same process:

Assume λi is the largest eigenvalue computed from a shift σ, and the new active
shift σnew is close to σ with σnew > σ. Then from σnew, (λi+1, xi+1) would be
computed and xi+1 might fail to be orthogonal to xi. In this case, we adopt the
idea of external selective orthogonalization [Parlett and Scott 1979] [Grimes et al.
1994], i.e., computing a new set of eigensolutions by deflating the already computed
invariant subspace associated to λi.

Our implementation takes advantage of SLEPc’s built-in support for subspace
deflation. We first determine when the deflation is needed, e.g., when σnew is close to
σ, such as ν(σnew)−ν(σ) < nev, where nev is the number of requested eigensolutions
for a single shift (an ARPACK parameter). We then select all eigenvectors of λi

as the invariant subspace and call SLEPc’s function EPSAttachDeflationSpace()
during the setup phase for the eigenvalue solver.

Case 2. Eigenvectors are computed in two neighboring processes:
We use eigensolution duplication in this case. As discussed in Section 3.4, each

process expands its Computed Spectrum until all requested eigensolutions are found
collectively. During this procedure, we enforce neighboring Computed Spectra to
overlap for at least one eigenvalue at the ends of their subintervals. For example,
assuming λi−1 < λi < λi+1 are single eigenvalues and λi is computed by two
neighboring processes. From the previous discussion, the overlapping eigenvector
xi ensures it is orthogonal to the eigenvectors xi−1 and xi+1 that are associated to
λi−1 and λi+1, because xi−1, xi and xi, xi+1 are computed by the same process
respectively. Consequently, xi−1 and xi+1 are orthogonal to each other because their
eigenvalues are relatively further apart. This discussion is applicable to multiple
eigenvalues λi < λj < λk.

At the end of the computation all duplicate eigensolutions are dumped, cf. Step
(3) in Fig. 1.

3.6 Organize Subgroups of MPI Communicators

Up to this point, the discussion on SIPs has assumed that Step (2) of the Multiple
Shift-and-Invert Parallel Eigenvalue Algorithm (see Fig. 1) are processed sequen-
tially, i.e., a single process holds the entire matrix pencil (A,B) and implements
shift-and-invert Lanczos iterations at distributed shifts. As the size of the eigen-
problems increases, the local memory space becomes a limiting factor for holding
the matrix factorization and distributed eigenvectors. In this situation, we must
have multiple processes provide adequate storage spaces collectively and execute
matrix operations concurrently.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

122 · H. Zhang et al.

We cope with this local memory limitation by organizing subgroups of MPI com-
municators [Gropp et al. 1999]. An MPI communicator defines a context or scope for
parallel communication. For example, MPI COMM SELF and MPI COMM WORLD
are two default communicators normally used in MPI-based parallel programs. New
communicators can be created by spliting existing ones for restricted communica-
tions. In SIPs, we introduce two new communicators, called commEps and comm-
Mat, by spliting MPI COMM WORLD into a 2D process grid. Each communicator
commEps and commMat has npEps and npMat processes, for which we assume
npEps × npMat = np, the total number of processes in MPI COMM WORLD.
Within each commMat, npMat processes concurrently implement operations de-
scribed in the Multiple Shift-and-Invert Parallel Eigenvalue Algorithm (Fig. 1) as
sequential operations, which are primarily matrix operations. Every process also
belongs to a communicator commEps, by which they exchange information about
Computed Spectra for balancing workload among commEps as discussed in Sec-
tion 3.4. Fig. 4 illustrates the layout of a 4(npEps)× 3(npMat) process grid.

Proc[11]Proc[8][5]

idEps = 1

idMat = 2

Proc[2]

Proc[10]Proc[7][4]

idEps = 1

idMat = 1

Proc[1]

Proc[9]Proc[6]id = [3]

idEps = 1

idMat = 0

Proc[0]

λmin
λmax

commEps

commMat

Fig. 4. Communicator Layout

4. NUMERICAL EXPERIMENTS AND COMPARISON

From algorithmic analysis and numerical experiments we find that the performance
of our eigensolver will be dominated by the computational cost of matrix factoriza-
tions and triangular solves. The communication time is ignorable when npMat = 1,
and remains insignificant as npMat is increased to meet memory demand. When
npMat = 1, SIPs only exchanges neighboring short messages which overlap with
computation. When the matrix size becomes too large to be held on a single pro-
cess, npMat is increased to the minimum number of processes for storing the matrix
factorization. For our largest tests, npMat = 4 was sufficient to satisfy the mem-
ory demand. The communications within the small MPI communicators commMat
remain insignificant for the total execution time.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SIPs · 123

We tested SIPs on eigenvalue problems arising from DFTB models of various
materials and dimensionality. In order to give a balanced evaluation on SIPs’
performance, we present here numerical results for three representative systems:

(1) a single-wall carbon nanotube;2

(2) a diamond nanowire;3

(3) a diamond crystal.4

We built each system at varying physical sizes, resulting in a consistent set of matrix
sizes up to n = 64, 000. For the first two test systems, one-dimensional periodic
boundary conditions are applied in the physical model, and three-dimensional ones
for the last system. The nature of the test systems and their physical boundary
conditions are reflected in distinct occupancy patterns of the matrices A and B, and
the resulting sparse densities of their factorizations. For example, when n = 1, 600,
the sparse densities of the matrix factorizations are 7% for the nanotube, i.e., fairly
sparse, 15% for the nanowire, and 50% for diamond, i.e., dense.

The numerical experiments were performed on a Linux cluster called Jazz, at
Argonne National Laboratory. Jazz comprises 350 computing nodes, each with a
2.4GHz Pentium Xeon processor and a connection to both Myrinet and Ethernet
communication networks.

For all the tests except the few cases discussed below, we specify the input error
tolerance as tol = 10−8. All eigensolutions achieve the relative residual norm
ri = O(10−8), Eq. (7), and the numerical orthogonality |ϑij | < 10−8, Eq. (8).

Figuress 5–7 show the execution time for computing the lowest 60% of the eigen-
values and the associated eigenvectors for the systems. Timings are collected from
the second run of the eigenvalue problem (1), in which the previously computed
eigensolutions provide initial eigenvalue approximations {λ̂i} as discussed in Sec-
tion 3.2. This is because the eigenvalue problem (1) is solved many times using
initial eigenvalue approximations except for the first run. When the initial approx-
imation {λ̂i} is not available, the execution time of the current version of SIPs is
sensitive to the user input data (λmin, λmax) and the initial distribution of Assigned
Spectra. With sensible spectral bounds,5 the initial run typically takes up to twice
the time of the successive execution of the eigenvalue problem Eq. (1).

Fig. 5 shows the execution time for a single-wall carbon nanotube system on
Myrinet (left) and Ethernet (right). For matrix sizes n = 6, 400 to n = 32, 000,
we use npMat = 1 because the local distributed memory is sufficient for holding
the entire matrix factorization. When n ≥ 48, 000, we increase to npMat = 4.
The sudden increase of execution time from n = 32, 000 to n = 48, 000 is caused
by the delay of parallel matrix factorizations and triangular solves as implemented

2A (10,0) armchair -tube with diameter 1.36 nm; 20 atoms on the circumference, at varying length.
3Oriented along the (001) crystal direction with (110) faces and a cross section of (1.14 nm)2, 25
atoms per layer, at varying length.
4Same orientation as the nanowire, with periodic boundary conditions in all three dimensions, at
varying size of the supercell.
5It should be noted that in a materials modeling application like DFTB, the eigenvalue search
interval (λmin, λmax) is known reasonably well, either from general materials properties or from
traditional calculations of a smaller system.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

124 · H. Zhang et al.

30 s

1 min

3 min

10 min

30 min

1 h

3 h

8k 12k 16k 24k 32k 48k 64k

P1 P2 P3 P4 P5 P6 P7 P8

W
al

lti
m

e

Matrix size

quadratic

cubic

SIPs NP=1
SIPs NP=4
SIPs NP=16
SIPs NP=64

ScaLapack NP=4
ScaLapack NP=16
ScaLapack NP=64

30 s

1 min

3 min

10 min

30 min

1 h

3 h

8k 12k 16k 24k 32k 48k 64k

P1 P2 P3 P4 P5 P6 P7 P8
W

al
lti

m
e

Matrix size

quadratic

cubic

SIPs NP=1
SIPs NP=4
SIPs NP=16
SIPs NP=64

ScaLapack NP=4
ScaLapack NP=16
ScaLapack NP=64

Fig. 5. Execution time for a single-wall carbon nanotube system on Myrinet(left) and Ether-
net(right)

by MUMPS. Normally, one should not anticipate an ideal speedup of np when in-
creasing the number of processes from 1 to np due to communication, algorithmic
limitations and other overhead in parallel processing. We find that for the same test
system on the same number of processes, the execution time with npMat = 4 is ap-
proximately twice as long as the case with npMat = 1. This indicates the speedup
of matrix factorization and triangular solve implemented by MUMPS is approxi-
mately 2 from 1 process to 4 processes. We also observe much better speedups on
our systems by MUMPS when the number of processes is increased from 4 processes
to 16 or 64 processes. When the problem size n becomes large, e.g. n ≥ 48, 000,
we notice that among more than ten thousands of computed eigensolutions, one or
two pairs of eigenvectors lose orthogonality. These eigenvectors are computed from
the same shift. Therefore, we tighten the error tolerance to tol = 10−11 for the
cases of n = 48, 000 and n = 64, 000. The resulting execution times are about 3%
higher than the cases with tol = 10−8. Actually, it is only necessary to apply such
strict error tolerance to the few shifts from which highly clustered eigensolutions
are computed. What we need here is an a priori estimate for eigenvalue clusters,
based on which the error tolerances can be adjusted dynamically. This is a subject
for future development of SIPs.

Fig. 5 clearly shows that the execution time scales with the problem size n as
O(n2) for SIPs and O(n3) for ScaLAPACK. For a fixed problem size n, SIPs achieves
a speedup of 3 or higher whenever the number of processes is increased 4 times.
Because the matrices involved are sparse for this system, SIPs is significantly faster
than ScaLAPCK, e.g., for problem size n = 16, 000 using 64 processes, SIPs takes
approximately 4 minutes vs. ScaLAPACK’s 13 and 37 minutes on Myrinet and
Ethernet respectively. ScaLAPACK fails to compute problems with a size larger
than 19,200 due to memory limitations, while SIPs solves problems up to n =
64, 000. Thus far, we have not seen any indication for SIPs’ memory restriction
yet.

Fig. 6 shows the execution time for a diamond nanowire system with npMat = 1.
The matrix factors involved are about twice as dense as in the previous system,
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SIPs · 125

30 s

1 min

3 min

10 min

30 min

1 h

3 h

8k 12k 16k 24k 32k 48k 64k

P1 P2 P3 P4 P5 P6 P7 P8

W
al

lti
m

e

Matrix size

quadratic

cubic

SIPs NP=16
SIPs NP=64

ScaLapack NP=16
ScaLapack NP=64

30 s

1 min

3 min

10 min

30 min

1 h

3 h

8k 12k 16k 24k 32k 48k 64k

P1 P2 P3 P4 P5 P6 P7 P8
W

al
lti

m
e

Matrix size

quadratic

cubic

SIPs NP=16
SIPs NP=64

ScaLapack NP=16
ScaLapack NP=64

Fig. 6. Execution time for a diamond nanowire system on Myrinet(left) and Ethernet(right)

with a sparse density quantified somewhere between sparse and dense. SIPs takes
a much longer execution time on this system as compared to the previous one that
has sparser matrix factorizations, e.g., 27 minutes vs. 9 minutes for n = 32, 000
and np = 64. However, the SIPs execution time still scales O(n2) with the problem
size n. As the problem size increases, SIPs becomes faster than ScaLAPACK with
increased performance on both Myrinet and Ethernet.

1 min

3 min

10 min

30 min

1 h

3 h

8k 12k 16k

P1 P2 P3 P4

W
al

lti
m

e

Matrix size

quadratic

cubic

SIPs NP=4
SIPs NP=16
SIPs NP=64

ScaLapack NP=4
ScaLapack NP=16
ScaLapack NP=64

1 min

3 min

10 min

30 min

1 h

3 h

8k 12k 16k

P1 P2 P3 P4

W
al

lti
m

e

Matrix size

quadratic

cubic

SIPs NP=4
SIPs NP=16
SIPs NP=64

ScaLapack NP=4
ScaLapack NP=16
ScaLapack NP=64

Fig. 7. Execution time for a diamond crystal system on Myrinet(left) and Ethernet(right)

For the last system, a diamond crystal, the matrix factorizations are dense with
approximately 50% nonzero entries. Fig. 7 shows that ScaLAPACK is faster than
SIPs on Myrinet, but its expensive communication cost on 64 processes with Eth-
ernet pull its performance behind SIPs. Because the matrices involved are dense,
SIPs scales with the problem size n worse than O(n2), but seems still scales better
than O(n3) (note the slopes of the curve). When n > 16, 000, the local distributed
memories become too small for the matrix factorization, so we increase npMat = 1
to npMat = 4, which explains why the execution time jumps up at n = 19, 200.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

126 · H. Zhang et al.

Summarizing from all three systems, we find that first, SIPs requires far less mem-
ory than ScaLAPACK, which enables solutions of much larger eigenvalue problems.
Secondly, ScaLAPACK requires extensive data communications as the number of
processes or the problem size increases. Its performance is heavily affected by the
speed of network. SIPs’ communication cost is ignorable when npMat = 1 and
remains insignificant for npMat = 4. Its execution time on Myrinet and Ethernet
are almost identical. The communication speed in parallel processing does not have
a noticeable effect on SIPs’ performance. Third, for matrices with sparse factoriza-
tions, the computational time for SIPs scales as O(n2) vs. O(n3) for ScaLAPACK.
SIPs’ computational time strongly depends on the sparsity of the matrix factoriza-
tion Eq. (3). Although the number of collected data points is insufficient to draw
a concluding scale, we can concede that, all systems together bear out the theo-
retical prediction O(n ∗ nnz), where nnz is the number of nonzero entries in the
matrix factorization Eq. (3). For matrices with sparse factorizations, the computa-
tional time is significantly smaller than the ones with dense factorizations, e.g., 21
minutes for the system of carbon nanotube vs. 3.5 hours on the diamond crystal
system with np = 4 and n = 16, 000. Finally, SIPs is robust, giving accurate so-
lutions for all the tested systems that have extremely pathological spectrum. For
example, the system of carbon nanotube with n = 64, 000 has more than 30,000
requested eigenvalues clustered in a relatively tiny interval (-0.9, 0.1). SIPs delivers
all eigensolutions with relative residual norm ri = O(10−8), Eq. (7), orthogonality
|ϑij | = O(10−10), Eq. (8), and satisfying efficiency.

5. CONCLUSIONS

This article describes SIPs, a new efficient and robust software package implement-
ing multiple shift-and-invert spectral transformations on parallel computers. It is
developed on top of PETSc, SLEPc, ARPACK and MUMPS for computing a large
number of solutions of sparse Hermitian generalized eigenvalue problems.

We presented the algorithm and detailed implementation techniques. We demon-
strated parallel numerical experiments on a set of selected eigenvalue problems from
nanoscale materials modeling. Comparing SIPs with ScaLAPACK on both fast and
slow communication networks, SIPs (1) requires much less memory; (2) scales O(n2)
vs. ScaLAPACK’s O(n3) with the problem size n when the shifted matrix (A−σB)
has sparse or not-very-dense matrix factorization; and (3) SIPs is robust, capable
of computing large and pathological eigenvalue problems with high accuracy.

Its object-oriented design makes SIPs applicable to most available Lanczos-based
eigensolvers, especially the solvers provided or interfaced by SLEPc. Through this
design, SIPs immediately inherits the flexibility and portability from PETSc, func-
tionalities of eigenvalue computation from SLEPc, performance and robustness from
the state-of-the-art external sparse matrix solvers (MUMPS and ARPACK in our
current implementation).

Finally, the work reported here is not restricted to the eigenvalue problems posed
by the DFTB method. It is a general robust eigensolver applicable to a wide
range of sparse Hermitian generalized eigenvalue problems. SIPs or its design and
algorithmic approach can be adopted to leverage existing sparse eigenvalue software
packages.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SIPs · 127

ACKNOWLEDGMENTS

We would like to thank Satish Balay for assisting software installations, and YunKai
Zhou for customization of ARPACK.

REFERENCES

Amestoy, P. R., Duff, I. S., Koster, J., and L’Excellent, J.-Y. 2001. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal of Matrix Analysis
and Applications 23, 1, 15–41.

Amestoy, P. R., Duff, I. S., and L’Excellent, J.-Y. 2000. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Comput. Methods in Appl. Mech. Eng. 184, 501–520.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D.,
Greenbaum, A., Hammarling, S., Mckcnncy, A., and Sorensen, D. 1999. LAPACK User’s
Guide, third edition. SIAM, Philadelphia.

Balay, S., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes,
L. C., Smith, B., and Zhang, H. 2004. PETSc users manual. Tech. Rep. ANL 95/11 - Revision
2.2.1, Argonne National Laboratory.

Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., , Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.
1997. ScaLAPACK User’s Guide. SIAM, Philadelphia.

Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai,
S., and Seifert, G. 1998. Self-consistent-charge density-functional tight-binding method for
simulations of complex materials properties. Phys. Rev. B 58, 11, 7260–7268.

Ericsson, T. and Ruhe, A. 1980. The spectral transformation lanczos method. Math. Comp 34,
1251–1268.

Grimes, R. G., Lewis, J. G., and Simon, H. D. 1994. A shifted block lanczos algorithm for
solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15, 1 (Jan.),
228–272.

Gropp, W., Lusk, E., and Skjellum, A. 1999. Using MPI, 2nd Edition. MIT Press.

Hernandez, V., Roman, J. E., Tomas, A., and Vidal, V. 2004. SLEPc users manual. Tech.
Rep. DSIC-II/24/02 - Revision 2.2.1, D. Sistemas Informáticos y Computación, Universidad
Politécnica de Valencia.

Lanczos, C. 1950. An interation method for the solution of eigenvalue problem of linear differ-
ential and integral operators. J. Res. Nat. Bur. Stand 45, 255–282.

Lehoucq, R. B., sorensen, D. C., and Yang, C. 1998. ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadel-
phia.

Marques, O. A. 1995. BLZPACK: Description and user’s guide. Tech. Rep. TR/PA/95/30,
CERFACS, Toulouse, Franc.

Parlett, B. and Scott, D. 1979. The lanczos algorithm with selective orthogonalization. Math
Comp. 33, 217–238.

Sleijpen, G. L. G. and van der Vorst, H. A. 1996. A jacobi-davidson iteration method for
linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425.

Teranishi, K., Raghavan, P., and Yang, C. 2003. Time-memory trade-offs using sparse matrix
methods for large-scale eigenvalue problems. In Proceedings of the 2003 International Confer-
ence on Computational Science and its Applications, Lecture notes in Computer Science 2677,
Editors V. Kumar, M. L. Gavrilova C. J. K. Tan, and P. L’Ecuyer. 840–847.

Wu, K. and Simon, H. 1997. A parallel lanczos method for symmetric generalized eigenvalue
problems. Tech. Rep. LBNL-41284, Lawrence Berkeley National Laboratory.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

